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We describe how the variational method can be used to derive accurate analytical approximations of the
solitary wave solutions of coupled nonlinear Schro¨dinger equations. This can be achieved with a hyperbolic
secant ansatz combined with a Taylor series expansion of the time-averaged interaction Lagrangian. This
technique is illustrated here in the context of third-order nonlinear optics but should prove also useful for other
nonlinear systems.@S1063-651X~96!04906-9#

PACS number~s!: 42.65.Tg, 42.81.Dp, 42.81.Gs

I. INTRODUCTION

Considering the fact that realistic optical fibers are not
truly single mode, owing to the presence of birefringence,
Menyuk@1# has pointed out that a correct description of non-
linear pulse propagation in a fiber should be based on the
so-called vector nonlinear Schro¨dinger ~NLS! equation. In
conventional soliton units, the propagation in the anomalous
dispersion regime is then modeled by a pair of coupled NLS
equations@1#:
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wherec1 and c2 represent the normalized slowly varying
envelopes of the slow and fast polarization components, re-
spectively. The propagation distancez is expressed in units
of dispersion length,d is half of the inverse group-velocity
mismatch due to the birefringence,t is the normalized time
in a reference frame moving at an average group velocity;
the cross-phase modulation factors52/3 andm51/3 in this
case.R5(8pc/l0)(0.567 T) where l0 is the wavelength
and T is the full width at half maximum~FWHM! of the
pulse intensity profile~for a sech2 pulse shape!.

The important point first demonstrated numerically by
Menyuk @2,3#, and later observed experimentally@4#, is the
fact that the nonlinearity can still be strong enough to simul-
taneously compensate for the dispersion and combat the ten-
dency of the polarization components to split apart as a result
of their group velocity difference. The two polarization
pulses trap each other and form what is called a vector soli-
tary wave. To investigate the nature of these pulses, the
coupled NLS equations can be simplified by first introducing
a phase transformation@5,6#

c15Uexp@ i ~d2z/22dt!#,
~2!

c25Vexp@ i ~d2z/21dt!#,

and by neglecting the rapidly oscillating last term on the
left-hand side of each equation, as is justified for pulses in
the picosecond range~see@1#!. The equations then read as
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The phase transformation introduced above is indicative of
the physical process giving rise to the mutual trapping of the
polarization components: through cross-phase modulation,
each partial pulse shifts its central frequency in such a way
that both group velocities become equal@2–4#.

It turns out that the same evolution equations@Eqs. ~3!#
also govern an important limit case, relevant to the operation
of soliton fiber lasers, where the inducednonlinearbirefrin-
gence is thought to be the dominant mechanism so that the
fiber can be considered practicallylinearly isotropic ~d50!
@7–11#. Indeed, in such a case, the evolution equations~1!
can be transformed into Eqs.~3! ~with s now equal to 2! if
the field is rather expressed in terms ofcircularly polarized
components@7–11#. Allowing for polarization rotation as the
pulses propagate along the fiber, vector solitary waves of the
form

U~z,t!5u~t!exp@ iwz#,
~4!

V~z,t!5n~t!exp@ ibz#,

whereu and v are real functions, have been analyzed re-
cently @7–11#. The pulse shapes of these solitary waves must
then satisfy the following coupled ordinary differential equa-
tions:

1
2 ü1~u21sn2!u2wu50,

~5!1
2 n̈1~n21su2!n2bn50.

The phase mismatch~b2w! introduces a polarization rota-
tion which might play an important role in the pulse forma-
tion in soliton fiber lasers.*FAX: ~418!-656-2623. Electronic address: cpare@phy.ulaval.ca
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As a third example in nonlinear optics where the same
coupled equations@Eqs.~5!# appear, let us mention the case
of mutual trapping of counterpropagating beams~spatial
solitary waves@12#! which might represent the ultimate state
of a pattern formation initiated by a transverse modulational
instability @13,14# ~in that case,s51 or 2, depending on
whether or not spatial diffusion washes out the induced grat-
ing!.

Except for a few particular cases discussed further below,
Eqs. ~5! must generally be solved numerically~e.g., by the
shooting method@15#!. Considering the widespread occur-
rence of these vector solitary waves, it would be interesting
to find approximate analytical solutions of the governing
coupled equations. In this paper, we describe how the varia-
tional method ~also called Whitham’s averaging method
@16#! can provide simple and accurate analytical expressions
for the pulses’~or beams’! profiles. Although Eqs.~5! pos-
sess different types of solutions@7–10#, we limit ourselves to
the fundamental~i.e., without nodes! solitary waves. This
restriction is further justified by the fact that the higher-order
solutions have been found unstable in some instances@7# and
the interest for developing accurate approximations in such a
case is reduced.

To limit the number of parameters, it is worth pointing
out that the solitary wave equations@Eqs.~5!# can be renor-
malized in terms of the phase parameterw @9,10,12#: through
the change of variablesx→x/w1/2, u→uw1/2, n→nw1/2,
b→b/w, one recovers Eqs.~5! with w now equal to 1. In the
following, we then posew51, having this scaling in mind for
wÞ1. The parameter space can also be limited to the region
b>w. Indeed, the above scaling invariance implies that the
results forb<w can be inferred from those obtained forb>w
by using the symmetry

u,n~b1/2x!ub/w<15n,u~w1/2x!u~b/w!85w/b>1 .

This also implies the energy scaling:

Eu,nub/w<15
b

w
En,uU

~b/w!85w/b>1

.

II. VARIATIONAL APPROACH

The first step in the variational approach~see@17# for an
introduction to this method when applied to the single NLS
equation! consists in finding the Lagrangian density associ-
ated with the governing equations. In the present case, it can
be shown that the coupled Eqs.~5! can be derived~via the
Euler-Lagrange equations! from the following variational
problem:

dL[dE L dt50,

where the Lagrangian density is given by

L5ut
21nt

212wu212bn22~u41n412su2n2!. ~6!

This formulation is then exploited as the basis of a Rayleigh-
Ritz optimization procedure. The crucial step is the choice of
an appropriate ansatz for the trial solutions. As mentioned
above, the set of coupled Eq.~5! possesses exact analytical

solutions in some particular cases, and this can be a useful
guide. For example, if one of the components is absent, the
other one then satisfies the single NLS equation. Hence,
n50, u5A2wsech(A2wt) or u50, n5A2bsech(A2bt) are
solutions of the system~5!. As another example,u56n
5A2w/(s11)sech(A2wt) also solves Eqs.~5!. Let us also
mention that a perturbative analysis of the system~5! has
also been carried out@7,9,10,12# around the solutionn50,
u5A2wsech(A2wt), in the limit unu!uuu. ~For other par-
ticular solutions of the coupled NLS equations, but less rel-
evant to the present analysis, see@18–21#!. Inspired from
these cases, we use the following ansatz foru andv:

u5a1sech~b1t!,
~7!

n5a2sech~b2t!.

This ansatz is also justified by the fact that it represents an
exact solution~with b15b2! in the cases51 ~Manakov’s
system@18#!. The Euler-Lagrange equations, applied to the
integrated Lagrangian density~averaged LagrangianL! then
provide the ‘‘best’’ choice for the unknown parametersa1,2
andb1,2. Unfortunately, whenb1Þb2 ~the general case!, the
interaction part of the Lagrangian density~L int522su2n2!
cannot be integrated analytically. This difficulty is usually
circumvented by the choice of a different ansatz. In particu-
lar, aGaussianansatz~;ai exp[2bit

2], i51 or 2! seems a
natural choice since it allows for an analytical integration
@5#. The results with aGaussiantrial function will not be
detailed here~see@5#! but will be illustrated graphically for
the sake of comparison. Its main limitation is a poor descrip-
tion of the wings of the profiles and this can be understood
from the asymptotic limit~utu→`! of the system~5! @9#. In
that region, one can drop the nonlinear terms and then con-
clude that both profiles must present anexponential~rather
than Gaussian! tail, as also evidenced by the particular ana-
lytical solutions discussed above.

Here, we show how one can maintain the~expected! more
accurate sech trial functions~7! without penalty, in terms of
numerical effort. We simply notice that in most cases, in-
spection of the numerical solutions reveals that the pulse
width ratio b1/b2 is in the range 0.7'<b1/b2<'1.3 and
we then suggest to develop the troublesome integral in a
Taylor series around the pointb15b2 . As clearly demon-
strated below, the series turns out to be rapidly converging.

To proceed, using the ansatz~7!, the Euler-Lagrange
equations applied to the averaged Lagrangian lead to the
following nonlinear system of four coupled equations for the
unknown parameters:
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where we introduce the width ratioh :

h5
b1
b2
,

the pulses’ energiesE1,2 ~Eu5E1 andEn5E2!:

E1,25E
2`

1`

a1,2
2 sech2 b1,2t dt52

a1,2
2

b1,2

and the integralsP(h) andT(h):

P~h!5
1

2 E
2`

1`

sech2x sech2hx dx, ~9a!

T~h!5E
2`

1`

x sech2xthx sech2hx dx. ~9b!

The integralT(h) arises from a term of the form]P/]h. We
note parenthetically that it is straightforward to show that the
particular exact analytical solutions discussed above can be
recovered from this system. This is obviously not the case
when Gaussian trial functions are used.

It is important to note that the perturbative analysis briefly
mentioned above@before Eq.~7!# reveals that the fundamen-

tal solutions we are interested in exist only in the range
1/bc<b<bc , wherebc52.438 ~for s52! corresponds to
the value at whichEn→0. We now solve the nonlinear sys-
tem ~8!. First, straightforward algebra yields

E2

E1
5
123hs@P~1/h!2hT~h!#

h23sFP~h!2
1

h
T~1/h!G . ~10!

If b is considered as the free parameter, then the unknown
value ofh has to be determined by solving~e.g., by using the
bisection method! the implicit equation

bh5

E2

E1
1s@P~1/h!1hT~h!#

11s
E2

E1
FP~h!1

1

h
T~1/h!G . ~11!

A similar implicit equation must also be solved with the
Gaussian approximation. More simply, Eqs.~10! and ~11!
are better seen as aparametric solution E1,2 vs b, where the
parametric variableh is allowed to vary in the range for
which 1/bc<b<bc . E1 andE2 can now be found from

E1
25

8

S 11s
E2

E1
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1

h
T~1/h!G D S 113s

E2

E1
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1

h
T~1/h!G D ~12!

and Eq.~10!, and the other parameters are then determined
from

b15
E1

2
1
3

2
sE2FP~h!2

1

h
T~1/h!G , ~13!

b25
b1
h
, ~14!

and

a1,25Ab1,2E1,2/2. ~15!

The solution above can be fully analytical if one makes a
Taylor expansion inh of the integralsP(h) andT(h). It is
easy to demonstrate that, to the second order in~12h!, one
has

P~h!>12
h

3
1
1

3 F12
p2

15G~12h!2, ~16!

and

T~h!>
1

3
2
2p2

45
~h21!1

p2

30
~h21!2. ~17!

The validity of these second-order expansions is demon-
strated graphically in Fig. 1. In the next section, the analyti-
cal solution just derived is compared with the exact numeri-
cal solution as well as with the Gaussian approximation.

III. NUMERICAL RESULTS

In this section, we demonstrate how accurate this simple
approach can be. To illustrate this, we restrict ourselves to
the cases52 which is of relevance for the problem of po-
larization rotation in isotropic fibers and also for the problem
of counterpropagating beams in a Kerr-like medium. Figure
2~a! first compares the dispersion curves~energy vs propa-
gation constant! obtained numerically~solid lines! by using
the shooting method@15# with the variational results based
on a Gaussian ansatz~dashed lines with circles!. The curve
(Eu1En) is relevant to the stability analysis for the counter-
propagating problem, as will be discussed elsewhere. Al-
though the agreement is relatively good, one can appreciate
@Fig. 2~b!# the great improvement obtained with the sech
ansatz combined with a second-order expansion of the inte-
gralsP andT. The agreement is then almost perfect~actu-
ally, a first-order expansion is almost as good!. Figure 3
displays the variation of the width ratio as a function ofb, as
determined from Eq.~11!. Its range of variation justifies the
second-order expansion proposed here~see Fig. 1!.
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The dispersion curves depict agrosscharacteristic of the
solutions which is generally less sensitive to the detailed
shapes of the solitary wave profiles. To demonstrate this,
Fig. 4 now compares the exact~numerically obtained! pro-

FIG. 1. Variation of the integralsP(h) and T(h) @Eqs.
~9a!,~9b!# as a function of the width ratioh. A comparison is made
between the exact numerical integration~solid lines! and the
second-order analytical approximations~circles! @Eqs.~16!,~17!#.

FIG. 2. Comparison between the numerically obtained disper-
sion curves~solid lines! with the variational approximations using
~a! a Gaussian ansatz;~b! a sech ansatz. The parameters is fixed
equal to 2. The results forb<w can be inferred from symmetry
properties, as discussed in the text.

FIG. 3. Variation of the width ratio parameterh as a function of
the propagation constantb. The parameters52.

FIG. 4. Comparison between the numerically obtained solitary
wave profilesu andv and the predictions of the variational model
using a Gaussian ansatz.~a! b51.3; ~b! b51.8; ~c! b52.3. The
parameters is equal to 2.
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filesu andn with the Gaussian variational approximation for
three different values of the parameterb. The approximate
solution provides a relatively good estimate of the width and
amplitude parameters but fails to describe properly the wings
of the pulses. In sharp contrast, Fig. 5 shows that the sech
trial solution is nearly exact and this, without additional nu-
merical work. In terms of polarization rotation, such accurate
~and still simple! analytical results can be useful for deter-
mining the length of polarization switch (LS5[p/uw2bu])
in terms of the energy ratioEn/Eu @11#. This is illustrated in
Fig. 6.

IV. DISCUSSION

This work dealt withstationary solutions of the vector
NLS equations. Regarding the important question of stability
of these solutions, we must emphasize that even though the
solitary waves described here are relevant to various nonlin-

ear problems, their stability must be analyzed separately for
each situation, since thedynamicalequations from which
they originate are different. We are currently investigating
this point in the context of counterpropagating solitary waves
~spatial domain! ~see @2,3,22# for the case of birefringent
fibers and@7,10# for the case of isotropic fibers! and the
present results can provide a good basis of analysis. This will
be detailed elsewhere.

We believe that the idea of a Taylor series expansion of
the integral of the interaction Lagrangian, as proposed here,
can also prove fruitful in other problems. Hence we are also
currently investigating the case of solitary waves in a qua-
dratic ~x~2!! medium, a problem receiving a growing atten-
tion in the literature. The important problem of soliton inter-
action in a nonlinear directional coupler has already been
considered with a variational approach under simplifying as-
sumptions@23,24#. It might be worth revisiting this problem
along the lines suggested in this paper.

Besides its mathematical interest, the result of this work
might be useful for practical design or modeling consider-
ations. This would be the case, for example, for systems
involving polarization rotation such as soliton fiber lasers.
Finally, we would like to mention the work of Bhakta@25#
concerning another approach for approximating the solution
of the coupled NLS equations. In that work, the Hirota
method is used in a perturbative analysis of thez-dependent
evolution of interacting solitary waves. We believe, how-
ever, that the variational approach suggested here is more
appropriate for the description of fundamentalstationary
solitary waves, at least in the context of the three examples
discussed here and borrowed from nonlinear optics.
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l’Aide à la Recherche~FCAR! of the Gouvernement du Que´-
bec and the Natural Science and Engineering Research
Council ~NSERC! of the Governement of Canada.

FIG. 5. Comparison between the numerically obtained solitary
wave profilesu andv and the predictions of the variational model
using a sech ansatz.~a! b51.3; ~b! b51.8; ~c! b52.3. The param-
eters is fixed equal to 2. These results should be compared with
those of Fig. 4.

FIG. 6. Length of polarization switch vs the energy ratio of the
polarization components as predicted from the variational model
using a sech ansatz. The parameters is fixed equal to 2.
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