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Accurate variational approach for vector solitary waves
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We describe how the variational method can be used to derive accurate analytical approximations of the
solitary wave solutions of coupled nonlinear Sairmer equations. This can be achieved with a hyperbolic
secant ansatz combined with a Taylor series expansion of the time-averaged interaction Lagrangian. This
technique is illustrated here in the context of third-order nonlinear optics but should prove also useful for other
nonlinear systemg§S1063-651X96)04906-9

PACS numbeps): 42.65.Tg, 42.81.Dp, 42.81.Gs

I. INTRODUCTION 1=VUexdi(5%z/2— 67)],

Considering the fact that realistic optical fibers are not = Vexdi(8%z/2+ 57)], @
truly single mode, owing to the presence of birefringence, . . I
Menyuk[1] has pointed out that a correct description of non-and by ne_glectlng the rapld_ly osullgtmg !‘?‘St term on th?
linear pulse propagation in a fiber should be based on th ft'h?”d side of each equation, as is I.USt'f'ed for pulses in
so-called vector nonlinear Sclfinger (NLS) equation. In (e Picosecond rangeee[1]). The equations then read as

conventional soliton units, the propagation in the anomalous U 132
dispersion regime is then modeled by a pair of coupled NLS i —+ - —+(|U|?+a|V|)HU=0,
; . dz 2 Jr
equationg 1]: 3
Ay I\ 1P i ﬂ+£(92—\2/+(|V|2+0'|U|2)V=0.
= 5(7_7_) 2 92 + ([l + ol v 0z 207
_— ] The phase transformation introduced above is indicative of
+ uipayl exp(—iR62)=0, the physical process giving rise to the mutual trapping of the
(1)  polarization components: through cross-phase modulation,
9y AP, 1 Py, ) ) each partial pulse shifts its central frequency in such a way
I(E_ F) + > W+(| ol >+ o |yn| *) that both group velocities become eq{24].
It turns out that the same evolution equatid&s)s. (3)]
+ wsgs exp(+iR8z) =0, also govern an important limit case, relevant to the operation

of soliton fiber lasers, where the inducednlinear birefrin-

where ¢, and i, represent the normalized slowly varying 9&nce is thought to be the do_minant mephanisr_n so that the

envelopes of the slow and fast polarization components, rdiPer can be considered practicalipearly isotropic (5=0)

spectively. The propagation distanzés expressed in units L/—11. Indeed, in such a case, the evolution equatidis

of dispersion lengthg is half of the inverse group-velocity ¢an be transformed into Eq&3) (with o now equal to 2 if

mismatch due to the birefringencejs the normalized time the field is rather expressed in termsaafcularly polarized

in a reference frame moving at an average group Ve|ocity§0mponent$7—11]. Allowing f_or polarization rotation as the

the cross-phase modulation factor2/3 andu=1/3 in this pulses propagate along the fiber, vector solitary waves of the

case.R=(87C/\y)(0.567 T) where\, is the wavelength form

and T is the full width at half maximum(FWHM) of the

pulse intensity profiléfor a sech pulse shape 4
The important point first demonstrated numerically by V(z,7)=v(r)exdiBz], “)

Menyuk[2,3], and later observed experimentaly], is the

fact that the nonlinearity can still be strong enough to simulwhereu and v are real functions, have been analyzed re-

taneously compensate for the dispersion and combat the tegently[7—11]. The pulse shapes of these solitary waves must

dency of the polarization components to split apart as a resuthen satisfy the following coupled ordinary differential equa-

of their group velocity difference. The two polarization tions:

pulses trap each other and form what is called a vector soli-

tary wave. To investigate the nature of these pulses, the

coupled NLS equations can be simplified by first introducing

a phase transformatidrs,6]

U(z,7)=u(n)exdiez],

10+ (u?+ ov?)u—eu=0,

. 5
19+ (v + ou?)v— Br=0. ®

The phase mismatctB—¢) introduces a polarization rota-

tion which might play an important role in the pulse forma-
*FAX: (418)-656-2623. Electronic address: cpare@phy.ulaval.cation in soliton fiber lasers.
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As a third example in nonlinear optics where the samesolutions in some particular cases, and this can be a useful
coupled equationgEgs. (5)] appear, let us mention the case guide. For example, if one of the components is absent, the
of mutual trapping of counterpropagating bearispatial other one then satisfies the single NLS equation. Hence,
solitary waveg12]) which might represent the ultimate state »=0, u= \2¢sech(2¢7) oru=0, v=\2Bsech({257) are
of a pattern formation initiated by a transverse modulationakolutions of the systen5). As another exampley=+ v
instability [13,14 (in that case,o=1 or 2, depending on = .2¢/(o+ 1)sech(/2¢7) also solves Eqg5). Let us also
whether or not spatial diffusion washes out the induced gratmention that a perturbative analysis of the systé&nhas
ing). also been carried oyf,9,10,12 around the solution/=0,

Except for a few particular cases discussed further belowy = \[2osech(/2¢7), in the limit |»|<|u|. (For other par-
Egs. (5) must generally be solved numericallg.g., by the ticular solutions of the coupled NLS equations, but less rel-

shooting method15]). Considering the widespread occur- evant to the present analysis, g8—21). Inspired from
rence Of these vector SO“tary waves, it WOUId be |nterest|nghese cases, we use the fo"owing ansatzufmndv:

to find approximate analytical solutions of the governing

coupled equations. In this paper, we describe how the varia- u=a,sectib,7),

tional method (also called Whitham’s averaging method (7)
[16]) can provide simple and accurate analytical expressions v=asseclib,7).

for the pulses’(or beams) profiles. Although Eqs(5) pos- _ _ N )

sess different types of solutiofig—10], we limit ourselves to This ansatz |s.also justlfle_d by the fact that it represe,nts an
the fundamentali.e., without nodek solitary waves. This ©€Xact solution(with by=b,) in the caseo=1 (Manakov's
restriction is further justified by the fact that the higher-orderSYStem[18)). The Euler-Lagrange equations, applied to the
solutions have been found unstable in some instapflesnd  INtegrated Lagrangian densiiveraged Lagrangiah) then

the interest for developing accurate approximations in such Brovide the “best” choice for the unknown parameters,
case is reduced. andb, ,. Unfortunately, wherb, # b, (the general cagethe

) : k o 22
To limit the number of parameters, it is worth pointing INteraction part of the Lagrangian densty j,=—2ou»)

out that the solitary wave equatiof&gs. (5)] can be renor- cgnnot be integrated anlalytically.'This difficulty is usuglly
malized in terms of the phase paramatd®,10,12: throu%]h cwcumvente_d by the choice of a dlf;‘er(_ant ansatz. In particu-
the change of variables—x/ o2, U—ug2 v vl lar, aGauss_laran_satz(fai exp[—b;t], i=1 or 2 seems a
B— Ble, one recovers Eq$5) with ¢ now equal to 1. In the natural choice since it allow_s for an an::_xlytlca_l integration
following, we then pose=1, having this scaling in mind for [5]. '_I'he results with aGau.s,S|ant.r|aI function WI||. not be
¢#1. The parameter space can also be limited to the regioffetailed heresee[S]) but will be illustrated graphically for
B=¢. Indeed, the above scaling invariance implies that thdhe sake of comparison. Its main limitation is a poor descrip-

results forB<e can be inferred from those obtained 8¢ tion of the wings o_f the _profiles and this can be understood
by using the symmetry from the asymptotic limit(| 4—o0) of the system(5) [9]. In
that region, one can drop the nonlinear terms and then con-

clude that both profiles must present exponential(rather

U.V(51/2X)|,8/¢<1:V,U(<P1/2X)|(B/¢)/=¢/ﬁ>1- 0oth [ , .
than Gaussigntail, as also evidenced by the particular ana-

This also implies the energy scaling:

B

Eu,v|ﬁ/<p€l:; Ev,u

Iytical solutions discussed above.

Here, we show how one can maintain {lexpectedimore
accurate sech trial functionig) without penalty, in terms of
numerical effort. We simply notice that in most cases, in-

/o) =pl/B=1 . R .
(Bley=elf spection of the numerical solutions reveals that the pulse

width ratio b,/b, is in the range 0#=<b,/b,<~1.3 and

we then suggest to develop the troublesome integral in a
The first step in the variational approatdee[17] for an  Taylor series around the poii;=b,. As clearly demon-

introduction to this method when applied to the single NLSstrated below, the series turns out to be rapidly converging.

equation consists in finding the Lagrangian density associ- TO proceed, using the ansafZ), the Euler-Lagrange

ated with the governing equations. In the present case, it ca#duations applied to the averaged Lagrangian lead to the

be shown that the coupled Eq&) can be derivedvia the  following nonlinear system of four coupled equations for the

Euler-Lagrange equationdrom the following variational ~uUnknown parameters:

problem:

II. VARIATIONAL APPROACH

bl ZQD 2
§+ 5.3 E,—dE,P(%)=0, (89
5L55f Zdr=0, !
b, 28 2
where the Lagrangian density is given by §+ b, 3 E,—oE P(1/7)=0, (8b)
;i,%:ui-f- V§+2<pu2+2ﬂvz—(u4+ vi+20ur?).  (6) b, 2¢ 1 1
————+ 3z E;+0E, — T(1/9)=0, (80
This formulation is then exploited as the basis of a Rayleigh- 3 b 3 7
Ritz optimization procedure. The crucial step is the choice of
an appropriate ansatz for the trial solutions. As mentioned E_ 2_:3+ E E,+oE 7T(7)=0 8d)

above, the set of coupled E(p) possesses exact analytical 3 b, 3
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where we introduce the width ratig:

77 b2’
the pulses’ energieg, , (E,=E; andE,=E,):
2

a1,

+ oo
E, zzf a3 sech by ,rd7=2
’ e y , b:L2

and the integral®(#) andT(7%):

+

P(‘r;)=% f_: sechx sech7x dx, (93

+
T( 77)=f x sechxthx sec7x dx. (9b)

The integralT (#) arises from a term of the for@P/d 7. We

tal solutions we are interested in exist only in the range
1/B.<B=<p., where 3.=2.438 (for ¢=2) corresponds to
the value at whiclE,—0. We now solve the nonlinear sys-
tem (8). First, straightforward algebra yields

E_ 1—3170[P(1/77)—77T(77)]' (10

E, 1
P(n)—;T(lln)}

n—30

If B is considered as the free parameter, then the unknown
value of 7 has to be determined by solviitg.g., by using the
bisection methodthe implicit equation

E,
E—+U[P(1/77)+ nT(n)]
1

Bn= (11)

1o 2 P( )+1T(1/)
o =2 2
Eq g n K

note parenthetically that it is straightforward to show that the
particular exact analytical solutions discussed above can b& similar implicit equation must also be solved with the
recovered from this system. This is obviously not the cas&aussian approximation. More simply, Eq40) and (11)

when Gaussian trial functions are used.

are better seen aspmrametric solution E, vs 8, where the

It is important to note that the perturbative analysis brieflyparametric variabley is allowed to vary in the range for
mentioned abovgbefore Eq.(7)] reveals that the fundamen- which 18, <8<p.. E; andE, can now be found from

EZ=

8

Ey

2o Sriam)
1+0 — P(n)+;T(1/77)

(12

1+3 E[P —lTll D
TE, () . (1/n)

and Eq.(10), and the other parameters are then determined@he validity of these second-order expansions is demon-

from
b _El 3 1 / 3
1—?+§0'E2 P(W)_;T(]-??) , (13
b= (14)
27 7 ’
and
ay .= \by JEq 2. (15

The solution above can be fully analytical
Taylor expansion iny of the integralsP(#%) andT(7). Itis
easy to demonstrate that, to the second ordéfinz), one
has

n 1 2 "
P(n)=1-3+3|1-75/1-n" (16)
and
772 772
T(ﬂ)E§—4—5(7I—1)+%(7I—1)2- (17)

strated graphically in Fig. 1. In the next section, the analyti-
cal solution just derived is compared with the exact numeri-
cal solution as well as with the Gaussian approximation.

[ll. NUMERICAL RESULTS

In this section, we demonstrate how accurate this simple
approach can be. To illustrate this, we restrict ourselves to
the cases=2 which is of relevance for the problem of po-
larization rotation in isotropic fibers and also for the problem
of counterpropagating beams in a Kerr-like medium. Figure
2(a) first compares the dispersion curv@nergy vs propa-

if one makes agation constantobtained numericallysolid lineg by using

the shooting methof15] with the variational results based
on a Gaussian ansatdashed lines with circlesThe curve
(E,+E,) is relevant to the stability analysis for the counter-
propagating problem, as will be discussed elsewhere. Al-
though the agreement is relatively good, one can appreciate
[Fig. 2(b)] the great improvement obtained with the sech
ansatz combined with a second-order expansion of the inte-
gralsP andT. The agreement is then almost perféattu-

ally, a first-order expansion is almost as gpoBigure 3
displays the variation of the width ratio as a function@fas
determined from Eq(11). Its range of variation justifies the
second-order expansion proposed heee Fig. 1
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/E I ] The dispersion curves depictgaosscharacteristic of the
= 04| . solutions which is generally less sensitive to the detailed
= 03 F ] shapes of the solitary wave profiles. To demonstrate this,
L ; Fig. 4 now compares the exagtumerically obtainedpro-
02| (b) i
Ol [ PRI BV SR T N U0 T S JNE N YT SN O SO S WA VO VY ] 1 2
04 06 08 10 12 14 16 ’ numerical
1.0 i (a) u -——- v?:‘riatiopal
n 08 (Gaussian)
FIG. 1. Variation of the integralsP(#) and T(7) [Egs. :: 06
(99),(9b)] as a function of the width ratigg. A comparison is made 0.4
between the exact numerical integratigsolid lineg and the 02
second-order analytical approximatioftércles [Egs.(16),(17)]. 00
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FIG. 2. Comparison between the numerically obtained disper-
sion curveg(solid lineg with the variational approximations using FIG. 4. Comparison between the numerically obtained solitary
(a) a Gaussian ansatfh) a sech ansatz. The parameters fixed wave profilesu andv and the predictions of the variational model
equal to 2. The results foB<¢ can be inferred from symmetry using a Gaussian ansat®a) B=1.3; (b) 8=1.8; (c) 8=2.3. The
properties, as discussed in the text. parametelr is equal to 2.
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polarization components as predicted from the variational model
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-4 2 0 2 4 . .
ear problems, their stability must be analyzed separately for
T each situation, since thdynamical equations from which
] they originate are different. We are currently investigating
1. . . . . .
b (o namerical this pointin th_e context of counterpropagating s<_)l|ta_ry waves
5 u <-== variational (spatial domaih (see[2,3,29 for the case of birefringent
i‘o (sech) fibers and[7,10] for the case of isotropic fibersand the
= 0'8 present results can provide a good basis of analysis. This will
= o6 be detailed elsewhere.
0:4 We believe that the idea of a Taylor series expansion of
0.2 the integral of the interaction Lagrangian, as proposed here,
0.0 can also prove fruitful in other problems. Hence we are also

currently investigating the case of solitary waves in a qua-
dratic (y*?) medium, a problem receiving a growing atten-
T tion in the literature. The important problem of soliton inter-
action in a nonlinear directional coupler has already been
FIG. 5. Comparison between the numerically obtained solitaryconsidered with a variational approach under simplifying as-
wave profilesu andv and the predictions of the variational model sumptiong23,24. It might be worth revisiting this problem
using a sech ansat@) B=1.3; (b) 8=1.8;(c) B=2.3. The param- along the lines suggested in this paper.
eter o is fixed equal to 2. These results should be compared with Besides its mathematical interest, the result of this work
those of Fig. 4. might be useful for practical design or modeling consider-
ations. This would be the case, for example, for systems
involving polarization rotation such as soliton fiber lasers.
files u andv with the Gaussian variational approximation for Finally, we would like to mention the work of Bhak{25]
three different values of the paramei@r The approximate concerning another approach for approximating the solution
solution provides a relatively good estimate of the width andof the coupled NLS equations. In that work, the Hirota
amplitude parameters but fails to describe properly the wingsnethod is used in a perturbative analysis of thdgependent
of the pulses. In sharp contrast, Fig. 5 shows that the sectvolution of interacting solitary waves. We believe, how-
trial solution is nearly exact and this, without additional nu-ever, that the variational approach suggested here is more
merical work. In terms of polarization rotation, such accurateappropriate for the description of fundamentihtionary
(and still simplé analytical results can be useful for deter- solitary waves, at least in the context of the three examples
mining the length of polarization switch.g=[/|¢— B|]) discussed here and borrowed from nonlinear optics.
in terms of the energy ratig ,/E, [11]. This is illustrated in
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